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Abstract1

Biomedical research underpins progress in our understanding of human health and disease,2

drug discovery, and clinical care. However, with the growth of complex lab experiments,3

large datasets, many analytical tools, and expansive literature, biomedical research is in-4

creasingly constrained by repetitive and fragmented workflows that slow discovery and limit5

innovation, underscoring the need for a fundamentally new way to scale scientific exper-6

tise. Here, we introduce Biomni, a general-purpose biomedical AI agent designed to au-7

tonomously execute a wide spectrum of research tasks across diverse biomedical subfields.8

To systematically map the biomedical action space, Biomni first employs an action discov-9

ery agent to create the first unified agentic environment – mining essential tools, databases,10

and protocols from tens of thousands of publications across 25 biomedical domains. Built11

on this foundation, Biomni features a generalist agentic architecture that integrates large12

language model (LLM) reasoning with retrieval-augmented planning and code-based execu-13

tion, enabling it to dynamically compose and carry out complex biomedical workflows – en-14

tirely without relying on predefined templates or rigid task flows. Systematic benchmarking15

demonstrates that Biomni achieves strong generalization across heterogeneous biomedical16

tasks – including causal gene prioritization, drug repurposing, rare disease diagnosis, micro-17

biome analysis, and molecular cloning – without any task-specific prompt tuning. Real-world18

case studies further showcase Biomni’s ability to interpret complex, multi-modal biomedical19

datasets and autonomously generate experimentally testable protocols. Biomni envisions a20

future where virtual AI biologists operate alongside and augment human scientists to dra-21

matically enhance research productivity, clinical insight, and healthcare. Biomni is ready to22

use at https://biomni.stanford.edu, and we invite scientists to explore its capabilities, stress-23

test its limits, and co-create the next era of biomedical discoveries.24
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1 Introduction25

Biomedical research is a key pillar of modern science and medicine, driving discoveries in disease26

mechanisms, diagnostics, and therapeutics1–4. Yet, with the growth in large-scale experiments,27

data, tools, and literature, progress is increasingly slowed by fragmented, complex workflows that28

require specialized tools, exhaustive literature reviews, intricate experimental design, and careful29

statistical modeling5, 6. A vast volume of valuable biomedical data sits underutilized7, many so-30

phisticated analyses are not conducted, and many connections for past knowledge and literature are31

not made, not for lack of significance, but because the demand for expert researchers far exceeds32

the supply. This mismatch between data abundance and limited human bandwidth highlights an33

urgent need for a fundamentally new approach – one that can effectively scale expertise, streamline34

workflows, and unlock the full potential of biomedical research.35

Recent advances in Artificial Intelligence (AI) have created a paradigm shift, opening the36

possibility for fundamentally reshaping biomedical research8. AI agents have dramatically re-37

shaped fields such as software engineering9, law10, material science11 and healthcare12 by au-38

tomating repetitive tasks, enhancing productivity, and enabling breakthroughs that were previ-39

ously unimaginable. Given these developments, the question emerges: Can we build a virtual40

AI biomedical scientist? Such a virtual scientist would autonomously tackle diverse biomedical41

research tasks spanning multiple subfields, unlocking extensive capabilities and fostering novel42

insights through interdisciplinary integration – an achievement that can radically augment human43

biologists limited by specialized expertise. Capable of efficiently managing thousands of concur-44

rent tasks, this virtual scientist could dramatically enhance human productivity and accelerate the45

pace of biomedical discovery.46

Previous approaches have largely relied on specialist agentic workflows tailored to nar-47

row biomedical tasks13–19, which restricts their capacity to move fluidly and generalize across48

the full spectrum of biomedical domains, as needed to answer key research questions. Enabling49

an AI agent to handle a broad range of biomedical tasks introduces substantial technical chal-50

lenges – most notably, the need to tightly couple advanced reasoning20 with the ability to exe-51

cute highly specialized biomedical actions21. Although LLM-based reasoning has seen significant52

advancements22, such LLMs need access to an environment that explicitly defines the biomedical53
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action space, which is inherently diverse, domain-specific, and complex. Moreover, a truly capable54

system requires an agentic architecture that can natively interact with this biomedical environment55

– autonomously selecting and composing actions, using its reasoning capabilities to plan and exe-56

cute diverse tasks without relying on rigid, pre-defined workflows.57

Here we present Biomni, a generalist biomedical AI agent purpose-built to automate and58

advance biomedical research across a wide range of subfields. Acting as a virtual AI biologist,59

Biomni autonomously formulates novel, testable hypotheses, performs complex bioinformatics60

analyses, and designs rigorous experimental protocols. To enable this capability, we first con-61

structed a unified and comprehensive biomedical action space by systematically analyzing tens62

of thousands of biomedical research papers spanning 25 distinct subfields, curated from major63

bio-literature repositories. From this foundation, we developed an LLM-powered action discovery64

agent capable of reading papers and extracting key tasks, tools, and databases essential to driving65

biomedical discoveries. These elements are then selected and implemented into Biomni-E1, the66

foundational environment that defines the biomedical action space for agentic interaction. Biomni-67

E1 includes 150 specialized biomedical tools, 105 software packages, and 59 databases. We then68

designed Biomni-A1, a general-purpose agent architecture capable of flexibly executing a broad69

spectrum of biomedical tasks by using tools and datasets provided by Biomni E1. Given a user70

query, the agent first uses a retrieval system to identify the most relevant tools, databases, and soft-71

ware needed. It then applies LLM-based reasoning and domain expertise to generate a detailed,72

step-by-step plan. Each step is expressed through executable code, enabling precise and flexible73

compositions of biomedical actions – an essential feature given the domain’s reliance on highly74

specialized tools and data resources. Unlike traditional function-calling methods, this approach75

supports the dynamic and complex nature of biomedical workflows. This integrated system allows76

Biomni not only to solve challenging, large-scale biomedical problems with efficiency, but also to77

generalize to novel tasks across previously unseen areas of biomedical research.78

Rigorous benchmarking demonstrates Biomni’s outstanding performance across established79

biomedical Q&A benchmarks, and robust generalization performance in eight challenging, realis-80

tic scenarios never encountered during development. Additionally, we highlight Biomni’s practical81

capabilities through three impactful case studies: (1) analyzing 458 files of wearable sensor data82

to generate novel insights; (2) rapidly performing comprehensive bioinformatics analyses on mas-83
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sive raw datasets, such as single-cell RNA-seq and ATAC-seq data, to generate novel insights and84

hypotheses; (3) autonomously designing laboratory protocols to assist wet-lab researchers. With85

Biomni, we introduce the first generation of a scalable, general-purpose biomedical AI agent,86

setting the stage for an era where virtual AI biologists work alongside human researchers to dra-87

matically accelerate biomedical discovery from basic research to translation.88

2 Results89

Overview of Biomni. Biomni is a general-purpose biomedical AI agent comprising two main90

components: Biomni-E1, a foundational biomedical environment with a unified action space, and91

Biomni-A1, an intelligent agent designed to utilize this environment effectively.92

Curating a unified biomedical action space is challenging due to its inherent complexity and93

vastness. We systematically address this by employing an AI-driven approach (Figure 1a). Specif-94

ically, we leveraged the 25 subject categories defined by bioRxiv, selecting the 100 most recent95

publications per category. An action discovery LLM agent processed each paper sequentially,96

extracting essential tasks, tools, databases, and software necessary to replicate or generate the de-97

scribed research. This comprehensive set of resources constitutes the essential actions required to98

perform a large set of biological research tasks.99

We then curated Biomni-E1, an environment for a biomedical AI agent to perform a wide100

range of actions (Figure 1b). Identified tools were rigorously verified by human experts, along101

with corresponding test cases. These tools (Supplementary Table 1-Table 18) were specifically102

chosen for their non-trivial nature, encompassing complex code, domain-specific know-how, or103

specialized AI models. Recognizing the inherent flexibility required by biological software, which104

cannot always be simplified into static functions, we constructed an execution environment pre-105

installed with 105 widely-used biological software packages (Supplementary Table 23-30), sup-106

porting Python, R, and Bash scripts. For database integration, we categorized resources into two107

distinct groups. The first group consists of massive relational databases accessible via web APIs108

(e.g., PDB, OpenTarget, ClinVar) (Supplementary Table 19-20). Rather than creating numerous109

individual retrieval tools, we implemented a unified function per database. Each function accepts110

natural language queries and internally employs an LLM to parse database schemas and generate111

executable queries dynamically. Databases without web interfaces were downloaded into a data112
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lake and preprocessed locally into structured pandas DataFrames for seamless integration with the113

agent, for a total of 59 databases in Biomni-E1 (Supplementary Table 21-22). In summary, Biomni-114

E1 is the first environment for biomedical AI agent and includes 150 specialized biomedical tools,115

105 software, and 59 databases.116

To build a general-purpose agent capable of tackling diverse biomedical tasks, we require a117

specialized agentic architecture – one that avoids hardcoding workflows for each individual task.118

This led to the development of Biomni-A1, which incorporates several core innovations critical119

for operating across the biomedical research landscape. First, we introduce an LLM-based tool120

selection mechanism designed to navigate the complexity and specialization of biomedical tools,121

dynamically retrieving a tailored subset of resources based on the user’s goal. Second, recogniz-122

ing that biomedical tasks often require rich procedural logic, Biomni-A1 uses code as a universal123

action interface – allowing it to compose and execute complex workflows involving loops, par-124

allelization, and conditional logic. Crucially, this approach also enables the agent to interleave125

calls to software, tools, databases, and raw data operations that do not conform to predefined func-126

tion signatures-supporting flexible and dynamic integration of heterogeneous resources. Third, the127

agent adopts an adaptive planning strategy: it formulates an initial plan grounded in biomedical128

knowledge and iteratively refines it throughout execution, enabling responsive, context-aware be-129

havior. Together, these innovations enable Biomni-A1 to generalize to previously unseen tasks and130

domains, dynamically composing intelligent actions and interfacing with software, data, and tools131

in a way that embodies generalist biomedical intelligence (Figure 1c).132

Biomni excels on general biomedical knowledge and reasoning benchmarks. We evaluated133

Biomni on three challenging multiple-choice benchmarks of general biomedical knowledge and134

reasoning: Humanity’s Last Exam (HLE)23 and LAB-Bench24, which includes two key subtasks –135

DbQA (Database Question Answering) and SeqQA (Sequence Question Answering) (Figure 2a).136

These tasks span tool use, symbolic reasoning, and structured biological information retrieval137

– core competencies for any robust biomedical AI agent. To isolate the impact of tool access138

and agent design, we compared Biomni against six strong baselines (details in Supplementary139

Notes A).140

For LAB-Bench, a 45-question development set was used to refine tool and database inter-141

6



faces, while the final evaluation was conducted on 315 held-out test questions, with performance142

averaged across three independent runs. We only curated a representative 12.5% subset of the full143

benchmark due to API cost constraints. In DbQA, which requires structured querying over biolog-144

ical databases, Biomni achieved 74.4% accuracy – matching expert human performance (74.7%)145

and outperformed all baselines, including the coding agent (ReAct+Code, 40.8%). In SeqQA,146

which involves reasoning over DNA and protein sequences, Biomni achieved 81.9% accuracy,147

again exceeding human-level performance (78.8%).148

To test true generalization of biomedical knowledge and reasoning without any development149

set, we also evaluated Biomni on a 52-question subset of HLE spanning 14 biomedical subfields150

– from molecular biology to physiology. Biomni achieved 17.3% accuracy, significantly outper-151

forming the base LLM (6.0%), coding agent (12.8%), and literature agent (12.2%). These re-152

sults demonstrate Biomni’s ability to generalize across unfamiliar, open-ended biomedical domains153

without any task-specific adaptation. Additional ablation results are shown in Supplementary Fig-154

ures 1-2. Performances across each subfield are reported in the Supplementary Figure 3.155

Biomni generalizes to new, real-world biomedical tasks across diverse subfields. To evaluate156

generalization in realistic research tasks, we curated eight new biomedical benchmarks spanning157

genetics, genomics, microbiology, pharmacology, and clinical medicine (Figure 2b). Each task158

was framed to reflect a common, well-defined, but complex real-world biomedical research goal,159

including: (1) Variant prioritization: Identify the most likely causal variant from a list of poten-160

tial variants for a trait, requiring reasoning about regulatory functions in non-coding regions. (2)161

GWAS causal gene detection: Select the most likely causal gene within a locus, demanding fine-162

grained locus-level inference. (3) CRISPR perturbation screen design: Construct gene panels to163

maximize post-perturbation effect across a large (∼20,000 genes) search space. (4) Rare disease164

diagnosis: Map patient phenotypes and genetic findings to rare disease diagnosis. (5) Drug repur-165

posing: Given a rare disease and a list of candidate drugs, select the best therapeutic match. (6)166

Single-cell RNA-seq annotation: Assign accurate cell-type labels to individual cell profiles across167

tissues, species, and platforms. (7) Microbiome disease-taxa analysis: Perform statistical associa-168

tion tests on microbiome datasets to uncover disease-relevant taxa. (8) Patient gene prioritization:169

Given an individual patient’s genetic profile and phenotype description, identify the most plausi-170
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ble causal gene. We benchmarked Biomni without prompt engineering or task-specific fine-tuning171

against three baselines: (1) a base LLM (Claude Sonnet 3.7) without tool use, (2) a coding agent172

with direct function calls and code execution (ReAct+Code), and (3) Biomni-ReAct, an ablation173

of Biomni that replaces code-based planning with ReAct-style chaining. The complete benchmark174

constructions are described in Methods, with detailed performance comparisons in Supplementary175

Notes B.176

Across all tasks, Biomni outperformed the base LLM by an average relative performance177

gain of 402.3%, the coding agent by 43.0%, and its own ablated variant Biomni-ReAct by 20.4%.178

These findings highlight the importance of code-centric planning and environment grounding, en-179

abling Biomni to compose precise, flexible, and context-aware actions. For each benchmark, we180

further analyzed the execution trajectories, identifying commonly invoked tools, software, and181

datasets, as detailed in Supplementary Figures 6-16. These trajectories provide insight into the182

complexity and structure of agent behavior across tasks. On average, Biomni executes between 6183

and 24 distinct steps per task, involving combinations of 0-4 specialized tools, 1-8 software pack-184

ages, and 0-3 unique data lake items. The agent interleaves data extraction, search/retrieval, rea-185

soning, and computational analyses (Supplementary Figure 8) – reflecting a workflow pattern that186

mirrors how human scientists alternate between retrieving knowledge and generating new insights.187

Resource usage varies by task type: information synthesis tasks, such as CRISPR perturbation188

screen design and GWAS causal gene identification, rely heavily on database queries (e.g., KEGG,189

Reactome) and literature search (e.g., PubMed, Google), whereas bioinformatics analysis tasks190

like microbiome profiling and single-cell annotation involve minimal database use but extensive191

code execution with software libraries such as scanpy.192

Biomni jointly analyzes 458 wearable sensor files to generate physiological hypotheses. To193

evaluate Biomni’s performance in real-world biomedical workflows, we invited scientists to ap-194

ply it directly to their own research questions. In this case study, a researcher used Biomni to195

analyze 458 Excel files containing months-long wearable sensor data (continuous glucose moni-196

toring (CGM) and body temperature) from 30 participants. The data were highly heterogeneous:197

file formats varied, annotations were inconsistent, and participants exhibited substantial variability198

(Figure 3a). The researcher posed an open-ended question: Can we uncover biologically meaning-199
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ful thermogenic patterns?200

Biomni autonomously generated and executed a 10-step analysis pipeline (Figure 3b), in-201

ferring meal events from glucose spikes, extracting pre/post meal temperature windows, normal-202

izing across individuals, and synthesizing population-level trends. Crucially, after completing the203

pipeline, the agent delivered a structured, human-readable report summarizing its key findings204

(Supplementary Notes D). It identified a consistent postprandial thermogenic response, with an205

average temperature rise of 2.19◦C (median: 1.10◦CC) and a wide range across individuals (-206

0.11◦CC to 15.56◦CC). Some participants showed rapid, pronounced spikes within 30 minutes of207

eating, while others had delayed or muted responses – indicating divergent metabolic phenotypes208

(Figure 3c,d). These insights were not manually curated or extracted by a human; the agent per-209

formed the entire analysis end-to-end and surfaced the results as a concise narrative highlighting210

patterns that would otherwise being ignored in raw data.211

In a parallel workflow, the scientist requested Biomni to analyze 227 nights of wearable-212

recorded sleep data across 10 participants. Biomni computed averages for duration, efficiency,213

latency, and sleep stage composition, derived a composite sleep quality score, and conducted214

chronobiological analyses. The agent delivered a structured summary to the user (Supplemen-215

tary Notes D, Supplementary Figure 4), including personalized sleep profiles and timing insights,216

without human post hoc synthesis. Biomni uncovered several novel insights: sleep efficiency217

consistently peaked mid-week (on Wednesdays) and declined on Sundays, suggesting a potential218

behavioral pattern tied to pre-Monday stress or weekend-induced disruptions. Another important219

finding was that consistent sleep timing correlated more strongly with higher sleep quality than220

total sleep duration, highlighting the critical role of circadian regularity in maintaining restorative221

sleep.222

The scientist then tasked Biomni with analyzing multi-omics data (652 lipidomic, 731 metabolomic,223

and 1,470 proteomic features), jointly with the CGM data. Biomni conducted cross-omics correla-224

tion analysis, applied hierarchical clustering to uncover biologically coherent feature groups, and225

performed unsupervised PCA to link CGM signals to molecular pathways. It automatically gener-226

ated interpretable outputs – trajectory plots, heatmaps, boxplots, PCA biplots, and cluster maps –227

empowering rapid insight generation from complex multimodal datasets (Supplementary Notes D,228

Supplementary Figure 5). Significant correlations among lipids, metabolites, and proteins revealed229
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tightly interlinked regulatory pathways, underscoring the systems-level nature of metabolic regula-230

tion. Notably, several identi�ed biomarkers showed consistent patterns across samples and exhib-231

ited high connectivity within correlation networks. Across all cases, the scientist noted that Biomni232

accelerated the path from messy real-world data to testable hypotheses, supporting applications in233

sleep optimization, metabolic research, and precision health.234

Biomni automates complex multi-omics analysis to decipher transcriptional regulation of235

skeletal lineages.To test whether Biomni could generalize to complex omics work�ows, a scien-236

tist used it to analyze a recently published multi-omics dataset of the developing human skeleton25.237

This dataset comprises 336,162 single-nucleus RNA-Seq (snRNA) and ATAC-seq (snATAC-Seq),238

paired with spatial transcriptomics data collected from human embryos between 5-11 weeks post-239

conception (Figure3e). While the original study emphasized developmental trajectories and dis-240

ease mechanisms, the scientist was interested in exploring gene regulatory mechanisms across241

emerging skeletal cell types – a technically demanding task typically requiring extensive bioinfor-242

matics support.243

The scientist asked Biomni to investigate transcriptional regulation across skeletal lineages244

using a detailed instruction (Supplementary Notes E). The system autonomously planned and exe-245

cuted a ten-stage analysis pipeline: (1) loading and exploring all datasets, (2) preparing RNA-seq246

data for analysis, (3) con�guring pySCENIC to retrieve motifs, (4) running GRNBoost2 to infer247

gene regulatory networks, (5) pruning networks using cisTarget, (6) calculating regulon activity248

with AUCell, (7) extracting accessibility data from ATAC-seq, (8) �ltering predicted targets us-249

ing ATAC-seq accessibility, (9) analyzing activity patterns across cell types, developmental stages,250

and anatomical regions, and (10) summarizing �ndings and preparing a report to the scientist. It251

enabled Biomni to predict transcription factor-target gene links and �lter regulons based on mo-252

tif enrichment and chromatin accessibility correlations (Figure 3f). The full run, completed in253

just over �ve hours, handled real-time execution issues (e.g., variable name mismatches) by sub-254

sampling and debugging locally. Throughout, Biomni maintained all intermediate outputs – code,255

�gures, and logs – organized in a reproducible folder structure for validation and inspection. The256

agent summarized all the analysis and generated a report describing the analysis and key �ndings257

(Supplementary Notes E).258
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In its �nal gene regulatory network (GRN) analysis (Figure 3h), Biomni re-capitulated known259

regulatory relationships between key osteogenic transcription factors such as RUNX2 and HHIP,260

con�rming how they are regulated by a shared set of anti-osteogenic transcription factors including261

TWIST1, LMX1B, and ALX425. These �ndings align with author's report25 about the balanced262

regulation needed for proper bone formation and suture patency. Furthermore, Biomni also uncov-263

ered several unreported TFs, including AUTS2, ZFHX3, and PBX1, showed unexpectedly high264

regulatory activity across multiple skeletal cell types. Although PBX1 is a well-established skele-265

tal regulator26 and ZFHX3/AUTS2 have only limited or indirect skeletal reports (in mouse27
266

or zebra�sh28), their broad activity here suggests under-appreciated roles across diverse skele-267

tal lineages. Biomni reported that these novel regulators were particularly active in osteoblasts,268

preosteoblasts, and various chondrocyte populations, suggesting they play important but previ-269

ously unrecognized roles in the transcriptional control of skeletal cell fate determination during270

human embryonic development. Finally, Figure 3g-h reveals how Biomni's visualizations effec-271

tively captured both temporal dynamics of regulator activity and cell-type-speci�c variations in key272

regulons like RUNX2. This demonstrates how Biomni enables researchers to autonomously per-273

form complex multi-omics analysis and rapidly generate testable hypotheses without specialized274

programming expertise.275

Biomni designs wet-lab validated experimental protocol for cloning. To evaluate Biomni's276

ability to support real-world experimental design, we focused on a core task in molecular biology:277

cloning. This process is central to countless work�ows in research and biotechnology and requires278

complex reasoning, from designing high-�delity primers to choosing the right assembly method279

and validating constructs. While general-purpose LLMs have struggled to perform such tasks due280

to limited domain knowledge and tool access24, Biomni integrates LLM reasoning with dynamic281

tool execution, enabling expert-level performance in molecular biology tasks.282

To rigorously evaluate this task, we �rst collaborated with an expert group of gene-editing283

researchers to design an open-ended cloning benchmark and expert user study (Figure 4a). Our284

benchmark consisted of 10 realistic, representative cloning tasks covering Golden Gate, Gibson,285

Gateway, and restriction cloning – each with options including single-fragment vs. pooled assem-286

bly. The benchmark also included essential validation steps, such as designing Sanger sequencing287
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primers and analyzing restriction digests. We posed these tasks to four entities: an LLM (Claude288

3.7), Biomni, a human trainee (Stanford Biology Master with previous experience in cloning),289

and a senior human expert (Stanford Genetics PostDoc with 5+ years of cloning experience).290

Each was asked to generate a complete, end-to-end protocol along with the �nal cloned plas-291

mid map. Blinded expert reviewers assessed the outputs. Biomni produced protocols and designs292

that matched the human expert in accuracy and completeness – often providing comparable lev-293

els of detail and anticipating the same edge cases. In contrast, the human trainee's submissions294

were frequently incomplete or suboptimal, re�ecting the experience gap typical in early-stage re-295

searchers. Remarkably, Biomni completed all tasks autonomously in a fraction of the time taken296

by the expert.297

To further validate Biomni in a real-world setting, a scientist assigned it a practical cloning298

task: cloning a guide RNA targeting the human B2M gene into the lentiCRISPR v2 Blast construct299

(Figure 4b). Biomni successfully executed the task through a comprehensive work�ow (Figure 4c).300

First, it analyzed the plasmid structure using annotation and pattern search tools to identify key fea-301

tures necessary for cloning. It then designed three Cas9 sgRNAs targeting B2M using specialized302

knockout sgRNA design tools. For the cloning process, Biomni generated forward and reverse303

oligos with BsmBI overhangs to enable directional insertion of the sgRNA sequence. It produced304

detailed protocols (Figure 4d) for oligo annealing, double-stranded DNA formation, and Golden305

Gate cloning into the target vector. Biomni also provided complete bacterial transformation in-306

structions, including heat-shock steps and antibiotic selection. For quality control, it designed a307

U6 promoter sequencing primer to verify sgRNA insertion and simulated the Golden Gate assem-308

bly to produce the �nal plasmid map.309

The scientist followed Biomni's protocol exactly to perform the wet-lab experiment (Fig-310

ure 4e). Colonies appeared on the plate the next day; two were cultured, miniprepped, and se-311

quenced using the Biomni-designed primers – both showing perfect alignment. This case illustrates312

how scientists can rely on Biomni to autonomously design complex molecular biology experiments313

with accuracy comparable to human experts, but in a fraction of the time.314

User-friendly interface to empower scientists to generate biomedical discoveries.To bring the315

power of Biomni into the hands of every scientist, we built an intuitive graphical interface – avail-316
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able at https://biomni.stanford.edu – to help transform the way researchers interact with biomedical317

data and tools. This seamless platform enables users to submit natural language queries and receive318

results powered by the full capabilities of Biomni's agentic system. Whether designing complex319

cloning experiments, querying multi-omics databases, or generating hypotheses from wearable320

data, scientists can now access the intelligence of a general-purpose biomedical AI agent without321

writing a single line of code. The interface is designed for rapid iteration, real-time feedback, and322

visual traceability, allowing users to explore intermediate steps, inspect tool usage, and validate323

results interactively. By closing the gap between biomedical intent and execution, Biomni opens a324

new era of accessible, automated, and scalable scienti�c discovery. An example of this interface is325

shown in Supplementary Figure 17.326

3 Discussion327

Biomni marks a major step forward in biomedical research, demonstrating robust generalization328

across diverse sub�elds and laying the groundwork for AI agents as integral collaborators in scien-329

ti�c discovery. Its zero-shot performance across complex tasks – including those in genetics, ge-330

nomics, microbiology, immunology, pharmacology, and clinical medicine – underscores its poten-331

tial to boost research productivity, accelerate discovery, and broaden access to advanced biomedical332

analyses.333

By automating complex, labor-intensive work�ows, which normally require both expert334

knowledge and coding skills, Biomni enables researchers to redirect their efforts toward creative335

hypothesis generation, experimental innovation, and cross-disciplinary collaboration. This shift336

holds profound implications. In the conext of target and drug discovery for biopharma, Biomni337

can autonomously prioritize targets, design perturbation screens, or repurpose drugs – offering a338

path to faster, more cost-effective reasearch. In clinical application settings, its capabilities in gene339

prioritization and rare disease diagnosis point to more accurate, personalized insights and stream-340

lined diagnostics. For consumer health, Biomni's integration of wearable data and multi-omics341

analyses envisions real-time, individualized health monitoring and intervention.342

Nonetheless, several limitations remain. While Biomni's uni�ed environment spans a wide343

range of biomedical tools and databases, the evaluated tasks represent only a subset of the �eld,344

and key domains remain unexplored. In addition, in the action discovery agent, our decision to pri-345
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oritize the most recent literature makes the agent appear timely, but risks overlooking foundational346

concepts and techniques that have faded from current discourse despite their enduring relevance.347

The future versions should encapsulate a larger coverage of publications when de�ning the envi-348

ronment. Moreover, although Biomni approaches human-level performance in tasks like database349

querying, sequence analysis, and molecular cloning, it still struggles in areas requiring nuanced350

clinical judgment, novel experimental reasoning, analytical inventions, or deep biological thinking351

and synthesis. No system yet captures the full scope of human biomedical expertise. As re�ected352

in our benchmarks, Biomni has not achieved expert-level performance across all task categories.353

We expect continued improvements as foundation models evolve and the agentic environment ex-354

pands, as well as thanks to human experts and trainees deploying Biomni to facilitate or augment355

their work.356

These limitations open promising directions for future development. Training biomedical357

reasoning agents with reinforcement learning could enable continuous self-improvement in plan-358

ning and execution. Integrating multimodal data – text, images, and structured inputs – may further359

deepen reasoning capabilities. Equipping Biomni to autonomously discover and incorporate new360

tools and databases, as well as incorporate more historical methods (which may have high utility361

but can be easily forgotten by human users), would ensure adaptability and long-term relevance.362

Looking ahead, Biomni and its successors could become foundational infrastructure in an AI-363

powered biomedical ecosystem, working seamlessly with human experts to unlock novel insights364

into health and disease. This hybrid partnership may radically reshape biomedical research –365

automating hypothesis generation, scaling discovery pipelines, and enabling medical innovation366

to proceed at unprecedented speed and scope. General-purpose agents like Biomni could not only367

accelerate breakthroughs but rede�ne the future of scienti�c inquiry itself.368
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Figure 1: Overview of the uni�ed biomedical action space and agent environment in Biomni. (a) Work�ow for systematically
curating the uni�ed biomedical action space. Actions necessary to conduct biomedical research were extracted from 2,500 recent
bioRxiv publications across 25 biomedical sub�elds using an AI-driven discovery agent. Extracted actions were rigorously validated
and curated by human experts, resulting in the integration of 105 biomedical software tools, 150 specialized biological tools (includ-
ing wet-lab protocols, AI-driven predictive models, and domain-speci�c know-how), and 59 comprehensive biomedical databases.
(b) Illustration of the uni�ed biomedical action space spanning diverse biomedical sub�elds such as genetics, genomics, synthetic
biology, cell biology, physiology, microbiology, pharmacology, bioengineering, biophysics, molecular biology, and pathology. Rep-
resentative tools and databases integrated into Biomni's environment are shown, highlighting its general-purpose capabilities. (c)
Example work�ow demonstrating Biomni's reasoning and action composition process to autonomously answer a complex biological
question. Biomni retrieves relevant tools based on the user's query, formulates a structured reasoning plan, and composes executable
code to perform comprehensive bioinformatics analyses, iteratively re�ning its reasoning based on observations until converging on
a �nal, precise answer.
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Figure 2: Zero-shot generalization of Biomni across diverse realistic biomedical tasks. (a) Biomni is superior to 6 baselines in
Q&A multiple choice benchmarks that broadly evaluate the model's capability across biomedical �elds. (b) Biomni demonstrates
robust zero-shot performance across eight previously unseen, real-world biomedical scenarios spanning multiple biomedical sub-
�elds, without any task-speci�c �ne-tuning or prompt engineering. Evaluated tasks include variant prioritization and GWAS causal
gene detection (genetics and genomics), perturbation screen design (functional genomics, immunology), patient gene prioritiza-
tion, rare disease diagnosis (clinical genomics), drug repurposing (pharmacology), microbiome disease-taxa bioinformatics analysis
(microbiology), and single-cell RNA-seq cell annotation (single-cell biology). Across these diverse scenarios, Biomni consistently
outperformed baseline models (Base LLM, ReAct+Code) and specialized environments (Biomni ReAct), highlighting its general-
purpose biomedical capabilities and ability to autonomously adapt to new and complex biomedical tasks.
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Figure 3: Biomni autonomously executes complex multi-modal biomedical analyses to generate hypothesis. (a-d) Biomni rapidly
analyzed CGM-derived thermogenic responses data and activity data from 30 individuals, comprising 458 raw Excel sheets. (b)
Work�ow demonstrating Biomni's autonomous execution of data preprocessing, meal event detection, postprandial temperature
analysis, and thermogenic response characterization. (c) Representative individual temperature-response plots and temperature in-
crease distribution following meals, automatically generated by Biomni. (d) Summary of unique biological �ndings identi�ed
by Biomni, including signi�cant increases in core body temperature post-meal intake (average 2.19C, median 1.10C), and notable
inter-individual variability in thermogenic responses. (e-h) Biomni autonomously analyzed single-cell multiomics data from approx-
imately 336,000 nucleus droplets, combining single-nucleus RNA (snRNA-seq) and single-nucleus ATAC sequencing (snATAC-seq)
across human embryonic joint development (shoulder, hip, knee). (f) A detailed work�ow diagram showing Biomni's 10-step analy-
sis pipeline for gene regulatory networks with multiomics. (g) Two key �gures generated from Biomni: Left panel shows a heatmap
of regulator activity by developmental stage, with color intensity indicating activity levels. Right panel displays a boxplot of RUNX2
regulon activity by cell type, showing variation in expression across different cell populations. (h) Key �ndings from the GRN anal-
ysis: 1) Novel transcription factors (AUTS2, ZFHX3, and PBX1) showing high regulatory activity across multiple skeletal lineages
despite no previous association with skeletal development, and 2) Across the 566-589 regulons recovered, limb mesenchyme cells
display the highest mean regulonactivity score, underscoring their prominent role in skeletal transcriptional control.
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Figure 4: Biomni designs wet-lab experimental protocol. (a) Open-ended cloning benchmark on 10 real cloning scenarios. We
compared against base LLM, trainee-level human, and expert-level human scientists. We found that Biomni has similar accuracy
as the expert level scientist, and signi�cantly higher accuracy than trainee level, while using much less time. (b) Example of a
user request to Biomni for cloning an sgRNA targeting the human B2M gene into the lentiCRISPR v2 Blast plasmid. (c) Biomni's
automated stepwise work�ow, including plasmid analysis, sgRNA design, oligo synthesis, Golden Gate assembly, bacterial transfor-
mation, colony screening, and �nal plasmid mapping. (d) Biomni-generated detailed cloning protocol with step-by-step instructions
and comprehensive plasmid map, enabling laboratory scientists to execute the experiment autonomously. (e) Validation of Biomni's
cloning protocol through successful colony growth on selection plates, followed by Sanger sequencing con�rming perfect alignment
of sgRNA insertion in picked colonies, demonstrating Biomni's robust capability for precise and reliable experimental design.
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4 Methods369

Action Discovery from Literature. 100 recent publications from the year 2024 at biorxiv Were370

collected and analyzed by extracting and parsing their PDF contents. Each paper was processed371

in chunks, and a specialized prompt guided an LLM through each chunk to explicitly identify372

and extract three categories of actionable insights: tasks, software, and databases. Speci�cally for373

tasks, the LLM was instructed to highlight recurrent tasks requiring specialized implementations374

within biomedical research work�ows.375

Implementing the Biomni Environment. In the initial iteration of environment construction, a376

conservative and focused approach was adopted for tool curation. Initially, tasks were �ltered377

based on relevance to the primary research interests-drug discovery and clinical biomedicine-378

retaining �elds such as biochemistry, bioengineering, biophysics, cancer biology, cell biology, de-379

velopmental biology, genetics, genomics, immunology, microbiology, molecular biology, pathol-380

ogy, pharmacology, physiology, synthetic biology, and systems biology. Subsequently, these were381

narrowed down to approximately 1,900 commonly recurring tasks. These tasks were further man-382

ually reviewed to eliminate redundancy and exclude tasks that were trivial or easily implementable383

through simple code. Selecting highly specialized tasks that require signi�cant domain expertise384

was emphasized, such as wet-lab protocols and advanced AI models.385

Human scientists then collaborated with software engineering agents equipped with web386

search capabilities to implement each specialized tool. Every tool underwent rigorous validation,387

requiring a clearly de�ned test case that it successfully passed. This stringent process culminated in388

a curated collection of 150 specialized tools. Additionally, essential literature retrieval tools were389

included, such as PubMed and Google Scholar, with provisions for future iterative expansions.390

Each tool was strictly de�ned using a comprehensive checklist that mandated: (1) a clear391

and descriptive name, (2) detailed documentation, (3) outputs formatted as detailed research logs392

optimized for LLM interpretation, (4) the inclusion and successful passing of a speci�c test case,393

and (5) specialization criteria-if a task could easily be implemented via brief LLM-generated code394

(e.g., simple database queries), no specialized tool was created.395

Databases were categorized and extensive relational databases accessible via web APIs (e.g.,396

PDB, OpenTargets, ClinVar) were integrated using a uni�ed querying function. This function397

accepts natural language inputs and leverages an LLM to dynamically parse database schemas398

and execute corresponding queries. Databases lacking web APIs were downloaded and locally399

preprocessed into structured pandas DataFrames for seamless accessibility by the agent.400

For software integration, recognizing the frequent necessity of concurrently utilizing multiple401
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software tools, a uni�ed containerized environment was constructed, which was pre-installed with402

a comprehensive suite of relevant software. Additionally, this environment supports the execution403

of R packages and command-line interface (CLI) tools.404

Biomni-A1. The Biomni agent is a general-purpose biomedical AI agent built upon the CodeAct29
405

framework, designed to systematically solve biomedical tasks by combining LLMs with an inter-406

active coding environment. Given a user query, Biomni begins by prompting the LLM to generate407

a clear, numbered bullet-list plan detailing the steps needed to tackle the given problem, keeping408

careful track of progress and adjustments along the way. As the tool, software, and database space409

is vast, the query task may only use a small set of these resources. To avoid long context, a prompt-410

based retriever is utilized, powered by a separate LLM, where the agent dynamically selects the411

most relevant functions, datasets, and software libraries from available resources. During execu-412

tion, the LLM generates code, executes it in a coding environment (Python, R, or Bash), and returns413

the resulting observations to inform subsequent reasoning. This iterative approach continues until414

the agent converges on an accurate, validated solution.415

Q&A Benchmarks. Development and testing sets were created by sampling the LAB-Bench416

Database Question-Answering and Sequence Question-Answering benchmarks24. Due to resource417

constraints, each set comprises 12.5% of the complete reference, proportionally distributed across418

benchmark subtasks, providing a cost-effective and representative assessment of model perfor-419

mance. The development set informed iterative re�nements to Biomni's database integrations and420

tool implementations, while the test set provided an independent evaluation of generalization ca-421

pabilities. Accuracy was evaluated by following the LAB-Bench protocol, using multiple-choice422

answer options with an option for abstention due to insuf�cient information. Results represent423

averages across three independent evaluation runs.424

For Humanity's Last Exam (HLE)23, a representative sample of questions was selected, span-425

ning fourteen subdisciplines of Biology/Medicine: Genetics, Biology, Ecology, Neuroscience,426

Biochemistry, Microbiology, Immunology, Molecular Biology, Computational Biology, Biophysics,427

Bioinformatics, Genomics, and Physiology. From each subdiscipline, up to �ve questions were428

sampled (or the maximum number available if fewer than �ve existed in the category). This429

sampling approach yielded a �nal evaluation set of 52 questions that comprehensively assessed430

Biomni's performance across the biological sciences. The evaluation was conducted directly with-431

out the use of a development set.432

Curating real-world benchmarks. The variant prioritization benchmark was curated from Open433

Target Genetics30 ground truth set, and processed such that given a variant, a negative set of vari-434
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ants is found. The prompt was as follows: ”Your task is to identify the most promising variant435

associated with a given GWAS phenotype for futher examination. From the list, prioritize the436

top associated variant (matching one of the given variant). GWAS phenotype:f traitg Variants:437

f variant listg”. Accuracy was used as the metric. The GWAS causal gene detection benchmark438

utilized a dataset curated from Shringarpure et al31, using the original prompt: ”Your task is to439

identify likely causal genes within a locus for a given GWAS phenotype. From the list, provide440

only the likely causal gene (matching one of the given genes). Identify the causal gene. GWAS441

phenotype:f traitg Genes in locus:f genestrg”. Accuracy was used as the metric. The pertur-442

bation screen design benchmark was curated from Schmidt et al.32. The prompt is ”Task: Plan443

a CRISPR screen tof taskdescriptiong. There are 18,939 possible genes to perturb and only per-444

turb f num genesg genes. For each perturbation, you can measure outf measurementg which will445

be referred to as the score. Generatef num genesg genes that maximize the perturbation effect.446

Output format: a list of genes 1. XXX 2.XXX 3.XXX ...”. The evaluation metric was the average447

post-perturbed effect. As the scale differs for the post-perturbed effect, one screen (IL-2) was used.448

The scRNA-seq annotation benchmark ensured �exibility across diverse data formats (e.g., Cel-449

lxGene, author-hosted portals), encompassing multiple tissues, species, sequencing technologies,450

and experimental conditions. Datasets with author-provided annotations (Tier 1 or Tier 2, typically451

� 10 cell types) were prioritized, and 20k-50k cells were subsampled proportionally to their cell452

type distributions. Automatic evaluation was conducted at the single-cell level using LLMs via453

semantic match, accounting for both naming variations (e.g., �broblast vs. Fibroblast cells) and454

hierarchical relations (e.g., CD8+ T cells vs. T cells), judged on-the-�y by LLM agents and later455

veri�ed by humans. In the microbiome benchmark, both Biomni and human experts independently456

performed differential abundance analysis on �ve diverse microbiome datasets, selected to re�ect457

different data types, biological contexts, and analytical challenges. Dataset 1 comes from the MGM458

2.0 platform33 and includes relative microbial abundance across samples and another with sample459

labels, ideal for classi�cation tasks33. Dataset 2 curated from a well-known Nature study, offers460

microbial abundance data in mice alongside metadata such as diet and sex, making it valuable for461

modeling host-microbiome interactions34. Dataset 3, developed by Pasolli et al.35, combines eight462

human metagenomic studies with species-level features processed using MetaPhlAn235. Dataset 4463

explores microbial communities in drinking water systems, providing an OTU matrix with abun-464

dances represented as relative sequence counts. This environmental dataset allows models to be465

tested beyond host-associated microbiomes36. Finally, Dataset 5 is an in-house resource derived466

from the Human Microbiome Project37. Together, these datasets provide a comprehensive foun-467

dation for benchmarking AI agents in microbiome analysis across both clinical and environmental468
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domains. Biomni results were compared against those generated by human experts for consistency,469

accuracy, and ef�ciency. The drug repurposing benchmark used a dataset from Huang et al.38, for470

the task of identifying the most likely drug from a pre-de�ned list of drugs for repurposing in a471

given indication. Evaluation was based on the alignment score with off-label prescription patterns472

of clinicians from an EHR system. The prompt was ”Your task is to identify top 5 drugs that can473

be potentially repurposed to treat the given disease. From the list, prioritize the drug list with474

the highest potential (matching the given DrugBank IDs). Disease:f diseaseg Drugs: f drug listg475

Output format: a list of drugs with their DrugBank IDs, no drug name, just the IDs: 1. DB00001476

2. DB00002 3. DB00003 ..”. The rare disease diagnosis benchmark used the MyGene2 dataset,477

curated by Alsentzer et al.39. The ground truth was expert annotated diagnosis. The prompt was478

”Task: given a patient's phenotypes and a list of candidate genes, diagnose the rare disease that479

the patient has. Phenotypes:f phenotypelistg Candidate genes:f candidategenesg Output format:480

ff 'diseasename': XXX, 'OMIM ID': XXX gg”. The patient gene prioritization benchmark used481

a dataset curated by Alsentzer et al.39. The ground truth was a truly causal gene. The prompt was482

”Task: Given a patient's phenotypes and a list of candidate genes, identify the causal gene. Phe-483

notypes:f phenotypelistg Candidate genes:f candidategenesg Output format:ff 'causalgene':484

[gene1]gg”.485

Wearable analysis case study.A wearable case study integrated CGM-derived body temperature486

data, sleep metrics, and multi-omics datasets from human participants40, as follows: CGM Body487

Temperature Data: For each participant, continuous glucose monitors (CGMs) equipped with tem-488

perature sensors recorded skin temperature in high resolution. A total of 485 temperature �les were489

collected, each centered on a presumed meal event. The time window for each �le spanned 6 hours490

total, comprising 2 hours pre-meal and 4 hours post-meal. Sleep Data: Sleep metrics were derived491

from wrist-worn wearable devices for a subset of 10 participants, covering 227 nights of sleep. Pa-492

rameters collected included sleep duration, sleep ef�ciency, sleep latency, sleep stage composition493

(light, deep, REM), and number of wake episodes. Omics Data: Blood samples were analyzed to494

generate the following: Lipidomics: 652 lipid features across 147 samples; Metabolomics: 731495

metabolite features across 147 samples; Proteomics: 1,470 protein features across 20 samples.496

Multiome analysis case study.The authors' dataset was directly downloaded and used with no497

modi�cations 25. The authors' study generated a multi-omic dataset of human embryonic skeletal498

development from 5-11 weeks post-conception. The dataset includes snRNA-seq and snATAC-seq499

data from approximately 336,000 nuclei across �ve anatomical regions (hip, knee, shoulder joints,500

calvaria, and skull base). The dataset covers both appendicular (limb) and cranial regions. No501
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additional tools or manual preprocessing were added. As the analytical traces are extensive, more502

guidance was included in the prompt instruction and two use cases were tested:503

Comparative Analysis.This analysis focused on how cellular processes differ across anatomi-504

cal locations and developmental timepoints. Biomni was instructed to characterize the cellular505

composition across anatomical regions (calvaria, skull base, shoulder, hip, knee) and developmen-506

tal stages. We prompted Biomni with detailed instructions (Supplementary Section E), including507

cell type proportion estimates, region-speci�c population labels, UMAP embeddings, stacked bar508

plots, a comparison of intramembranous versus endochondral ossi�cation, key transcription factor509

highlights, and developmental trajectory tracing.510

Gene Regulatory Network AnalysisWe asked Biomni to identify transcriptional programs underly-511

ing skeletal development. Following a systematic 10-step process, Biomni inferred gene regulatory512

networks by: (1) loading and exploring all datasets, (2) preparing RNA-seq data for analysis, (3)513

con�guring pySCENIC to retrieve motifs, (4) running GRNBoost2 to infer gene regulatory net-514

works, (5) pruning networks using cisTarget, (6) calculating regulon activity with AUCell, (7)515

extracting accessibility data from ATAC-seq, (8) �ltering predicted targets using ATAC-seq ac-516

cessibility, (9) analyzing activity patterns across cell types, developmental stages, and anatomical517

regions, and (10) summarizing �ndings.518

Manual veri�cationTo evaluate whether the aggregated �ndings are truly re�ected by the data or519

merely simulated or hallucinated by the LLM, manual (human) veri�cation was conducted follow-520

ing the traces and codes generate by Biomni.521

Wetlab Benchmark Development and Evaluation.A comprehensive benchmark was developed522

consisting of 20 open-ended cloning questions curated from real-world applications to represent523

the diversity and complexity of molecular cloning tasks across four major categories: Golden524

Gate assembly, Gibson assembly, restriction enzyme cloning, and Gateway cloning. Each cate-525

gory included both single-construct and pooled cloning scenarios. Additionally, the benchmark526

incorporated common validation methods, including diagnostic restriction digestion, Sanger se-527

quencing primer design, and sequence alignment analysis. For establishing baseline performance,528

three human experts with extensive experience in molecular cloning were recruited. These experts529

were instructed to complete each task without utilizing language models but were permitted to use530

standard molecular biology tools, search engines, and publicly available online resources such as531

plasmid repositories and primer design platforms. The time required for each expert to complete532

each task was recorded, from initial task understanding to the �nal protocol and plasmid map gen-533

eration. In parallel, Biomni and general LLM models were evaluated on identical tasks. Each534

system was provided with the same task descriptions and required to generate detailed end-to-end535
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experimental protocols and �nal cloned plasmid maps. For general LLMs, Claude 3.7 was used as536

one of the most capable publicly-available models at the time of testing, providing it with the same537

information but without access to specialized molecular biology tools. For evaluation, an indepen-538

dent senior researcher with experience in molecular cloning technologies was recruited and blinded539

to the source of each protocol (human expert, Biomni, or general LLM). The evaluator assessed540

each protocol and plasmid map based on two primary criteria: (1) Accuracy: The correctness of541

the proposed methodology, including appropriate enzyme selection, reaction conditions, primer542

design parameters, and plasmid construction strategy. (2) Completeness: The thoroughness of the543

protocol, including all necessary steps, reagents, concentrations, incubation times, and veri�cation544

methods. Each criterion was scored on a scale of 1-5 according to a detailed rubric (Supplementary545

Table S31-32). The average scores across all 20 tasks were calculated for each system and human546

expert to enable direct comparison.547

Wetlab Validation. A practical cloning task was selected for validation: the insertion of a guide548

RNA targeting the human B2M gene into the lentiCRISPR v2 Blast construct. This task was549

chosen for its relevance to CRISPR-based gene editing applications and its moderate complexity,550

involving multiple molecular biology techniques. The experiment was conducted in a standard551

molecular biology laboratory setting using commercially available reagents and materials. The552

lentiCRISPR v2 Blast plasmid was obtained from Addgene. All protocols for the experiment were553

generated entirely by Biomni without modi�cation (Supplementary Notes F), including plasmid554

analysis, sgRNA design, oligo design with appropriate overhangs, detailed Golden Gate assembly555

conditions, bacterial transformation parameters, and veri�cation strategies. For validation of the556

cloning results, standard molecular biology practices were followed, selecting colonies for cul-557

ture and miniprep, followed by Sanger sequencing using the Biomni-designed primers. Sequence558

alignment analysis was performed to verify the correct insertion of the sgRNA sequence. The559

success of the cloning process was determined by the presence of bacterial colonies on selective560

media and subsequent sequence veri�cation con�rming the accurate incorporation of the designed561

sgRNA construct into the lentiCRISPR v2 Blast backbone.562
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Data availability. All data used in Biomni are publicly available at Harvard Dataverse under563

https://doi.org/10.7910/DVN/CE4ZYG.564

Code availability. Biomni is open-sourced at https://github.com/snap-stanford/biomni. A web-565

based user interface is available at https://biomni.stanford.edu. Note that the public tool is not for566

protected health information.567
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Supplementary materials678

Supplementary Notes679

A Details about baselines680

We use the following baselines for benchmark comparison: (1) a base LLM without tools, (2) Re-681

Act, using function-calling via chain-of-thought reasoning, (3) ReAct+Code, which adds Python682

code execution capabilities, (4) ReAct+Literature, which includes access to PubMed, web search,683

PDF extraction from URLs, and ArXiv papers, (5) ReAct+Code+Literature, combining both struc-684

tured and unstructured tool resources, and (6) Biomni-ReAct, an ablation of Biomni that shares the685

full environment but replaces Biomni-A1s code-based planning with standard ReAct-style tool686

chaining.687

B Details about real-world benchmark688

In the variant prioritization benchmark, curated from Open Targets Genetics30, the agent must689

identify the top disease-relevant variant from a GWAS-linked candidate set. Biomni achieved690

a 78.9% gain over the base LLM and outperformed ReAct+Code (+162%) and Biomni-ReAct691

(+3.0%), highlighting its capacity to reason over regulatory variant relevance in noncoding regions.692

In GWAS causal gene detection, adapted from Shringarpure et al.31, Biomni was asked to693

select the most likely causal gene from among candidates within a locus. It achieved a 19.4% gain694

over base LLMs and modest improvements over both ReAct+Code (+54.2%) and Biomni-ReAct695

(+2.7%), showing superior locus-level inference and granular reasoning.696

In the CRISPR perturbation screen design task, adatped from Roohani et al.15 using data from697

Schmidt et al.32, Biomni generated gene panels to maximize the experimental effect. It improved698

post-perturbation performance by 13.2% over ReAct+Code and 23.0% over Biomni-ReAct, de-699

spite the large gene space (� 19k genes), showcasing its ability to perform experimental planning700

strategically under strong constraints.701

In patient gene prioritization and rare disease diagnosis, using datasets from Alsentzer et702

al.39, Biomni mapped patient phenotypes and genetic �ndings to causal genes and diagnoses,703

achieving 19.4% and 10.3% gains over base LLMs, and outperforming Biomni-ReAct by 5.7%704

and 10.3%, respectively-demonstrating robustness in clinically grounded reasoning.705

In drug repurposing, adapted from TxGNN38, Biomni selected candidate drugs aligned with706

EHR-based off-label prescription patterns. Though the alignment gains over base LLMs were mod-707

est (+3.6%), Biomni remained competitive with both ReAct+Code and Biomni-ReAct, indicating708

its ability to handle subtle pharmacological signal amid high uncertainty.709

In single-cell RNA-seq cell annotation, where the task involved assigning cell types across710
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species, tissues, and platforms, Biomni achieved a 93.6% improvement over Biomni-ReAct and711

10.3% over ReAct+Code, based on semantic matching veri�ed by human adjudication-demonstrating712

highly accurate biological labeling in diverse contexts.713

Finally, in microbiome disease-taxa analysis, Biomni autonomously performed statistical714

testing and visualization on �ve metagenomic datasets from public datasets, like Human Micro-715

biome Project37 and literature. It outperformed the base LLM by 180.0%, ReAct+Code by 48.8%,716

and Biomni-ReAct by 25.0%, underscoring its strength in executing complex, noisy work�ows717

end to end41.718

C Biomni prompt719

System prompt for the generalist agent

You are a helpful biomedical assistant assigned with the task of
problem-solving.

To achieve this, you will be using an interactive coding
environment equipped with a variety of tool functions, data,
and softwares to assist you throughout the process.

Given a task, make a plan first. The plan should be a numbered
list of steps that you will take to solve the task. Be specific

and detailed.
Format your plan as a checklist with empty checkboxes like this:
1. [ ] First step
2. [ ] Second step
3. [ ] Third step

Follow the plan step by step. After completing each step, update
the checklist by replacing the empty checkbox with a checkmark:

1. [ ] First step (completed)
2. [ ] Second step
3. [ ] Third step

If a step fails or needs modification, mark it with an X and
explain why:

1. [ ] First step (completed)
2. [ ] Second step (failed because...)
3. [ ] Modified second step
4. [ ] Third step

At each turn, you should first provide your detailed thinking and
reasoning given the conversation history, along with the
updated plan (Always show the updated plan after each step so
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the user can track progress).
After that, you have two options:

1) Interact with a programming environment and receive the
corresponding output within <observe></observe>. Your code
should be enclosed using "<execute>" tag, for example: <execute
> print("Hello World!") </execute>. IMPORTANT: You must end the

code block with </execute> tag.
- For Python code (default): <execute> print("Hello World!") </

execute>
- For R code: <execute> #!R\nlibrary(ggplot2)\nprint("Hello

from R") </execute>
- For Bash scripts and commands: <execute> #!BASH\necho "Hello

from Bash"\nls -la </execute>
- For CLI softwares, use Bash scripts.

2) When you think it is ready, directly provide a solution that
adheres to the required format for the given task to the user.
Your solution should be enclosed using "<solution>" tag, for
example: The answer is <solution> A </solution>. IMPORTANT: You

must end the solution block with </solution> tag.
- If user does not specify the format, use a report format. In

the report, include the result and also a summary of how
you solved the problem. Make it concise and to the point.
Be rigorous.

- Use numbered references like [1], [2] in the summary if
applicable. Provide brief footnotes for each reference at
the end of the report, explaining the rationale or evidence
.

You have many chances to interact with the environment to receive
the observation. So you can decompose your code into multiple
steps.

Don't overcomplicate the code. Keep it simple and easy to
understand.

When writing the code, please print out the steps and results in a
clear and concise manner, like a research log.

When calling the existing python functions in the function
dictionary, YOU MUST SAVE THE OUTPUT and PRINT OUT the result.

For example, result = understand_scRNA(XXX) print(result)
Otherwise the system will not be able to know what has been done.
Don't overdo it. Stop when the plan is finished or the task is

already solved. Be relatively simple and concise and
understandable to the user.

Also, avoid faking or simulating code/data. Your user is a
721
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biomedical researcher. Thus, stay true and rigorous.
For the thinking process, put before the execute code block. Do

not use print statement in the execute code block for the
thinking process.

If you draw figures, make publication-ready and beautiful figures.

For R code, use the #!R marker at the beginning of your code block
to indicate it's R code.

For Bash scripts and commands, use the #!BASH marker at the
beginning of your code block. This allows for both simple
commands and multi-line scripts with variables, conditionals,
loops, and other Bash features.

In each response, you must include EITHER <execute> or <solution>
tag. Not both at the same time. Do not respond with messages
without any tags. No empty messages. In each response, there
could ONLY BE ONE TAG. Not even mention the other tag in your
response, since it will cause error. In each response, for the
tag, also just use once, not multiple times.

Try to save all generated files or images to the '/tmp/
agent_outputs/' directory.

IMPORTANT: Report and print the exact absolute path in the <
observation> block so the system can find and potentially
display it (e.g. print(f"Image saved at: path/to/image.png")).

Environment Resources:

- Function Dictionary:
{function_intro}
---
{tool_desc}
---

{import_instruction}

- Biological Data Lake (Amazon S3):
The biological data lake is stored in an Amazon S3 bucket: {

s3_datalake_uri}
{data_lake_intro}
You need to use appropriate tools/libraries to access files from

this S3 bucket within your code. Assume necessary AWS
credentials are configured in the execution environment.

----
Available Files (use these paths relative to the bucket URI):
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{data_lake_content}
----
- Software Library:
{library_intro}
Each library is listed with its description to help you understand

its functionality.
----
{library_content_formatted}
----
- Note on using R packages and Bash scripts:

- R packages: Use subprocess.run(['Rscript', '-e', 'your R code
here']) in Python, or use the #!R marker in your execute
block.

- Bash scripts and commands: Use the #!BASH marker in your
execute block for both simple commands and complex shell
scripts with variables, loops, conditionals, etc.

723

System prompt for the tool retriever LLM

You are an expert biomedical research assistant. Your task is to
select the relevant resources to help answer a user's query.

USER QUERY: {query}

Below are the available resources. For each category, select items
that are directly or indirectly relevant to answering the

query.
Be generous in your selection - include resources that might be

useful for the task, even if they're not explicitly mentioned
in the query.

It's better to include slightly more resources than to miss
potentially useful ones.

AVAILABLE TOOLS:
{self._format_resources_for_prompt(resources.get('tools', []))}

AVAILABLE DATA LAKE ITEMS:
{self._format_resources_for_prompt(resources.get('data_lake', []))

}

AVAILABLE SOFTWARE LIBRARIES:
{self._format_resources_for_prompt(resources.get('libraries', []))

}
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For each category, respond with ONLY the indices of the relevant
items in the following format:

TOOLS: [list of indices]
DATA_LAKE: [list of indices]
LIBRARIES: [list of indices]

For example:
TOOLS: [0, 3, 5, 7, 9]
DATA_LAKE: [1, 2, 4]
LIBRARIES: [0, 2, 4, 5, 8]

If a category has no relevant items, use an empty list, e.g.,
DATA_LAKE: []

IMPORTANT GUIDELINES:
1. Be generous but not excessive - aim to include all potentially

relevant resources
2. ALWAYS prioritize database tools for general queries - include

as many database tools as possible
3. Include all literature search tools
4. For wet lab sequence type of queries, ALWAYS include molecular

biology tools
5. For data lake items, include datasets that could provide useful

information
6. For libraries, include those that provide functions needed for

analysis
7. Don't exclude resources just because they're not explicitly

mentioned in the query
8. When in doubt about a database tool or molecular biology tool,

include it rather than exclude it
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System prompt for the action discovery agent

You are a research methodology expert specializing in identifying
computational tasks and data analysis procedures in academic
papers.

Your job is to analyze chunks of academic papers and identify ONLY
the most common, generalizable computational tasks that are

widely used across biomedical research and can be implemented
with Python or Linux code.

STRICT GUIDELINES:
1. ONLY extract tasks that are extremely common and standard in
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computational biomedical research
2. Each task MUST have clear, well-defined inputs and outputs
3. Tasks MUST be generalizable across many different papers and

research questions
4. Be VERY selective - only include tasks that appear in hundreds

of papers
5. If a task is specific to this paper, unclear, or not widely

used, DO NOT include it
6. Focus on computational tasks that can be implemented with

Python or Linux code
7. Each task should be something that could be implemented as a

function with clear inputs/outputs
8. Also identify commonly used databases and software packages

mentioned in the text
9. Tasks MUST be CONCRETE and SPECIFIC - include exact

methodological details
10. Avoid vague task names like "Statistical Analysis" - instead

use specific protocol names like "Two-way ANOVA with Tukey's
Post-hoc Test using SciPy"

11. DO NOT include wet lab procedures that cannot be implemented
computationally

12. ONLY include tasks that could be automated with code

For the following chunk of text from an academic paper, provide:
1. A list of ONLY the most common, generalizable COMPUTATIONAL

tasks identified (be extremely selective)
2. For each task, clearly define:

- Task name: A SPECIFIC and CONCRETE name with methodological
details (e.g., "RNA-seq Differential Expression Analysis
with DESeq2" instead of just "Gene Expression Analysis")

- Input: What SPECIFIC data or parameters the task requires
- Output: What SPECIFIC data or results the task produces
- Code implementation: How this task could be implemented with

Python or Linux code, including key libraries/packages
- Frequency: How common this computational task is in

biomedical research
- Standard methods: The established computational techniques

used to perform this task
- Example: A brief description of how THIS specific paper uses

this task (with specific details from the paper)
3. A list of commonly used databases mentioned in the text (if any

)
4. A list of commonly used software packages/tools mentioned in

the text (if any)

727

35



PAPER CHUNK:
{chunk_text}

Remember, it's better to return NO tasks than to include tasks
that aren't extremely common, generalizable, and implementable
with code. Quality over quantity is essential. Tasks MUST be
CONCRETE with SPECIFIC methodological details and MUST be
implementable with Python or Linux code.
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D Biomni generated report for the wearable case study729

User Prompt for CGM Wearable Temperature Data Analysis

Task: Here I Have some CGM thermo data from participants, I
recorded their body temperature after they took certain type
food, and used the device to record the data

Dataset: CGM thermo data in the format of csv
Path: {data_path}
Objective: Identify how each participants body temperature change

after they took food, and also see individual difference after
taking the food

Expected Output: plot the graphs please
Output Format:save figures in {save_path}

730

Agent Output for CGM Wearable Temperature Data Analysis

# CGM Thermo Data Analysis Summary

## Analysis Overview:
This analysis examined temperature data from CGM devices to

identify how body temperature changes after food intake and to
analyze individual differences in temperature responses.

## Methodology:
1. Temperature data was analyzed to identify potential meal times

based on significant temperature increases.
2. For each potential meal, a 6-hour window (2 hours before to 4

hours after) was analyzed to characterize the temperature
response.

3. Temperature changes were normalized relative to the pre-meal
baseline to enable comparison across subjects.

## Key Findings:
731
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- Average temperature increase after meals: 2.19 C
- Median temperature increase: 1.10 C
- Range of temperature increases: -0.11 C to 15.56 C

Individual Differences:
- Substantial variation was observed in temperature responses

across subjects.
- Some subjects consistently showed larger temperature increases

after meals than others.
- The timing of peak temperature also varied across subjects.

## Limitations:
- Without actual meal timing data, potential meal times were

inferred from temperature patterns.
- Some identified 'meals' may be temperature increases due to

other factors (exercise, environment, etc.).
- The analysis does not account for different meal types (high

carb, high fat, high protein).

## Generated Visualizations:
1. Daily temperature analysis plots
2. Meal window plots
3. Box plot comparing temperature increases across subjects
4. Bar chart of average temperature increases by subject
5. Average temperature response pattern after meals
6. Individual differences in temperature response patterns
7. Heatmap of temperature changes by subject
8. Distribution of temperature increases
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User Prompt for CGM Wearable Multi-Omics Data Analysis

Task: Here I Have some CGM omics from participants,can you help me
fully explore the omics data and generate some new insights"

Dataset: CGM omics data in the format of csv
Path: {data_path}
Objective: fully explore omics data and generate biological

insights
Expected Output: plot the graphs please and write a insightful

summary
Output Format:save figures in {save_path}
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Agent Output for CGM Wearable Multi-Omics Data Analysis

# CGM Omics Data Analysis: Key Biological Insights

## Dataset Overview
The analysis explored three distinct omics datasets from CGM

participants:
- ** Lipidomics ** : 652 features across 147 samples
- ** Metabolomics ** : 731 features across 147 samples
- ** Proteomics ** : Various proteins measured across multiple

samples

## Key Findings

### 1. Multi-omics Integration
The integrated analysis revealed coordinated patterns across

lipids, metabolites, and proteins, suggesting complex
biological processes that span multiple molecular layers.
Principal Component Analysis (PCA) showed distinct clustering
patterns in each dataset, with the first two components
explaining significant variance:

- Lipidomics: PC1 (24.15%), PC2 (15.34%)
- Metabolomics: PC1 (33.68%), PC2 (11.12%)
- Proteomics: PC1 (21.82%), PC2 (11.99%)

### 2. Potential Biomarkers
Several molecular features were identified as potential biomarkers

based on their high variance and correlation patterns. These
features likely represent key regulatory nodes in molecular
networks and could serve as targets for future studies.

### 3. Temporal and Seasonal Patterns
Temporal analysis revealed seasonal variations in molecular

profiles, suggesting environmental or lifestyle influences on
human physiology. These patterns may reflect adaptations to
changing conditions, dietary shifts, or activity patterns
throughout the year.

### 4. Molecular Networks
Correlation network analysis identified modules of co-regulated

features within each omics layer, likely representing
functional units or biological pathways. These networks provide

a systems-level view of molecular relationships and highlight
potential regulatory mechanisms.

### 5. Cross-omics Relationships
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Strong correlations were observed between features across
different omics layers, indicating coordinated regulation and
biological pathways that span multiple molecular types. These
relationships help understand the interplay between different
molecular classes in health and disease.

## Future Directions
1. ** Functional Validation ** : Validate identified biomarkers in

targeted studies
2. ** Pathway Analysis ** : Map features to specific biological

pathways
3. ** Clinical Integration ** : Integrate omics data with clinical

measurements
4. ** Longitudinal Studies ** : Follow individuals over time to

understand dynamic changes
5. ** Machine Learning Models ** : Develop predictive models for

early disease markers

The comprehensive analysis provides a foundation for understanding
the complex molecular landscape of CGM participants and offers
insights into potential biomarkers and biological mechanisms

that could inform future clinical applications.
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User Prompt for CGM Wearable Sleep Data Analysis

Task: Here I have some sleep data from wearables from participants
,can you help me fully explore the omics data and generate some

new insights"
Dataset: sleep data from wearables in the format of csv
Path: {data_path}
Objective: delve deep into sleep data and generate biological

insights
Expected Output: plot the graphs please and write a insightful

summary
Output Format:save figures in {save_path}
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Agent Output for CGM Wearable Sleep Data Analysis

# Sleep Data Analysis: Insights and Findings

## Overview
This analysis explored sleep data from wearable devices across 10

participants, covering 227 nights of sleep. The dataset
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captured detailed sleep metrics including duration, efficiency,
sleep stages (light, deep, REM), and various other parameters.
Through comprehensive analysis, we've identified several key

patterns and biological insights.

## Key Findings

### 1. Sleep Duration and Efficiency
- ** Average sleep duration ** : 7.82 hours, which falls within the

recommended 7-9 hours for adults
- ** Sleep efficiency ** : Mean of 86.86%, indicating generally good

sleep quality (>85% is considered efficient)
- ** Individual variation ** : Significant differences between

subjects, with average sleep duration ranging from 6.13 to 9.78
hours

- ** Consistency ** : 33.48% of nights had less than 7 hours of sleep
, while 49.78% had more than 8 hours

### 2. Sleep Architecture
- ** Sleep stage composition ** : On average, participants spent

59.09% in light sleep, 14.88% in deep sleep, and 19.02% in REM
sleep

- ** Deep sleep patterns ** : Deep sleep percentage ranged from
11.15% to 20.88% across subjects, with subject 43883-083
showing notably high deep sleep

- ** REM sleep variation ** : REM sleep percentage varied from 14.79%
to 23.26% across subjects, with subject 43883-087 showing the

highest REM percentage
- ** Sleep latency ** : Average time to fall asleep was remarkably

low at 4.13 minutes (below 10 minutes may indicate sleep
deprivation)

### 3. Sleep Quality Patterns
- ** Quality scoring ** : Our custom sleep quality score (

incorporating efficiency, sleep stages, latency, and wake-ups)
showed consistent patterns across subjects

- ** Wake episodes ** : Participants experienced an average of 24.23
wake episodes per night, which is relatively high

- ** Sleep stage correlations ** : Deep sleep percentage showed the
strongest positive correlation with overall sleep quality

- ** Duration-quality relationship ** : Moderate positive correlation
between sleep duration and quality score, with optimal quality
occurring around 7.5-8.5 hours

### 4. Chronobiological Insights
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- ** Weekday vs. weekend ** : Surprisingly, no statistically
significant difference between weekday and weekend sleep
duration (p=0.52)

- ** Social jetlag ** : Most subjects showed mild social jetlag (
shift in sleep timing between weekdays and weekends), with an
average of 0.49 hours

- ** Sleep timing consistency ** : Subjects with more consistent
sleep onset times tended to have better sleep quality

- ** Day-of-week patterns ** : Sleep efficiency was highest on
Wednesdays and lowest on Sundays, suggesting potential end-of-
weekend disruption

### 5. Individual Sleep Profiles
- ** Subject 43883-079 ** : Longest average sleep duration (9.78

hours) but not the highest efficiency, suggesting potential
oversleeping

- ** Subject 43883-074 ** : Shortest average sleep duration (6.13
hours) and lower efficiency (83.35%), indicating potential
sleep deficiency

- ** Subject 43883-090 ** : Most efficient sleeper (90.21%) despite
moderate duration (8.14 hours)

- ** Subject 43883-087 ** : Best REM sleep profile (23.26%) and
consistent sleep patterns

- ** Subject 43883-083 ** : Highest deep sleep percentage (20.88%),
suggesting good physical recovery during sleep

## Biological Implications

1. ** Sleep Homeostasis ** : The data reveals individual differences
in sleep need and efficiency, supporting the concept of sleep
homeostasis varying between individuals.

2. ** Sleep Architecture Balance ** : The distribution of sleep
stages (light, deep, REM) appears relatively normal across most

subjects, with expected ratios for healthy adults.

3. ** Circadian Rhythms ** : The relatively low social jetlag
observed suggests well-aligned circadian rhythms for most
participants, though individual differences exist.

4. ** Recovery Processes ** : Deep sleep percentages (associated with
physical recovery) vary significantly between subjects,

potentially reflecting differences in physical activity or
metabolic demands.
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5. ** Cognitive Processing ** : REM sleep (associated with cognitive
processing and memory consolidation) shows notable variation,
which may relate to differences in cognitive demands or
emotional processing needs.

## Recommendations for Future Research

1. Incorporate additional biometric data (heart rate, physical
activity, stress levels) to correlate with sleep patterns

2. Collect subjective sleep quality ratings to compare with
objective measures

3. Extend data collection to longer periods to better capture
seasonal variations and long-term patterns

4. Analyze the impact of environmental factors (temperature, light
, noise) on sleep metrics

5. Investigate the relationship between sleep patterns and daytime
performance/cognitive function

This analysis demonstrates the power of wearable technology in
capturing detailed sleep metrics, providing insights into both
population-level sleep patterns and individual variations that
have important implications for health and well-being.
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E Biomni generated report for the scRNA and scATAC case study741

User Prompt for scRNA and scATAC Joint Data Analysis

Task Gene regu la to ry ne twork (GRN) analysis with pySCENIC
+ snATAC

Goal Map transcription factor (TF) circuits that drive
skeletal development across anatomical regions and
developmental stages.

DATA
s n R N A s e q : {PATH}/filtered_core_rna.h5ad
snATAC seq : {PATH}/filtered_core_atac.h5ad
Workdir : {PATH}/buffer_o3_run6/
pySCENIC database : {PATH}/pyscenic/
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All intermediates & logs must be written here.

1 LOAD & ALIGN
1.1 Read both .h5ad files into memory (AnnData).
1.2 Verify identical cell barcodes and c e l l t y p e labels.
1.3 Ensure gene/peak annotation uses the same genome build.

2 TF SEED LIST
2.1 Start with canonical skeletal TFs (SOX9, RUNX2, etc.).
2.2 Augment the list by:

Related database in data_lake
Differential expression (DE) across cell types.
Differential accessibility (DA) of promoter peaks. (Add

any TF with DE padj < 0.05 AND DA padj < 0.05.)

3 P E R C E L L T Y P E GRN INFERENCE
3.0 Filter cell types: keep only those with 500 nuclei (or

50 pseudobulks).
3.1 For each qualifying cell type ** ct ** :

a) adata_ct = adata[adata.obs["cell_type"] == ct]
b) `print(f"[{ct}] starting GRNBoost2 ")`
c) Run GRNBoost2 save

`{workdir}/grnboost2/raw/{ct}_adjacency.csv`

4 MOTIF + ATAC PRUNING ( p e r c e l l t y p e )
4.1 Pseudobulk the matching snATAC cells of ** ct ** (min depth 20

k).
4.2 Keep an edge only if TF motif overlaps 1 accessible peak

in that pseudobulk.
4.3 Outputs: `ct_pruned_edges.csv`, print out informative

messages of intermediate results.

5 REGULON BUILD
5.1 Convert pruned edges to regulons (.loom + .csv).
5.2 Discard regulons with <20 target genes.

6 REGULON ACTIVITY (AUCell)
6.1 Compute AUCell scores per nucleus.
6.2 Save AUCell.h5ad (scores + metadata).

7 COMPARATIVE ANALYSIS
7.0 Concatenate all AUCell matrices.
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7.1 Within each ** ct ** , test stage / region effects.
7.2 Across cell types, highlight TFs unique to a lineage.

8 VISUALISATION
8.1 UMAP colored by selected regulons.
8.2 Heatmap: regulon c e l l t y p e ( r o w z s c o r e d AUCell).
8.3 Line plots: stage trajectory of key TF activities.

9 REPORT (Output: report.md or report.pdf)
9.1 Executive overview ( 2 0 0 words)

Purpose, datasets, key methods, headline discoveries.

9.2 Key findings (tables / figures)
T o p 1 0 regulons by AUCell score * per lineage *
Stage speci f ic TFs ( l o g 2 f o l d 1.5, FDR<0.05)
Region restr icted regulons (limb vs. craniofacial, etc

.)
Novel TFs not in seed list, ranked by targe t count .

9.3 Visual summary
UMAP coloured by 5 hallmark regulons.
Heatmap: Regulon c e l l t y p e ( r o w Z AUCell).
Bar plot: edge counts before/after ATAC pruning.

9.4 Method & QC appendix
Parameter table (motif DB, thresholds, software versions)

.
Runtime / memory stats.
Edge retent ion percentages for each pruning step.

744

Agent Output for scRNA and scATAC Joint Data Analysis

# Gene Regulatory Network Analysis in Skeletal Development

I've completed a comprehensive analysis of gene-regulatory-
networks (GRNs) in skeletal development using existing pySCENIC

and snATAC-seq data. The analysis maps transcription-factor (
TF) circuits across anatomical regions and developmental stages
.

## Analysis Overview

1. ** Inventory ** : Located all necessary files including adjacency
matrices, pruned edges, regulon tables, and AUCell data for 10
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distinct cell types.

2. ** Data Loading ** : Successfully loaded regulon data and AUCell
matrices, mapping cells to their corresponding cell types,
developmental stages, and anatomical regions.

3. ** Quality Control ** :
- Edge retention rates were consistently ˜10% across all cell

types
- All cell types had 566-589 regulons with at least 20 target

genes
- AUCell score distributions showed consistent patterns with

LimbMes exhibiting highest activity

4. ** Biological Analysis ** :
- Identified 458 differentially active regulons between early

and late developmental stages
- Found 4,177 differentially active regulons between anatomical

regions
- Mapped lineage-specific master regulators like SATB2 (cranial

mesenchyme), SOX5 (chondroprogenitors), and TWIST1 (
preosteoblasts)

- Discovered novel regulators including AUTS2, ZFHX3, and PBX1
with high activity across skeletal lineages

- Performed GO/KEGG enrichment for top regulons revealing
distinct biological processes for each cell type

5. ** Visualizations ** : Created a comprehensive set of figures
including:
- Heatmap of regulon activity across cell types
- UMAP embeddings colored by cell type and key regulon activity
- Bar plots of raw vs. pruned edge counts and retention rates

6. ** Comprehensive Report ** : Generated a detailed `report_full.md`
containing:

- Executive summary of key findings
- QC analysis with tables and figures
- Key discoveries with visualizations
- Novel regulator spotlight
- Detailed methods section

## Key Discoveries

1. ** Spatiotemporal Regulation ** : Extensive differences in regulon
activity between developmental stages and anatomical regions,
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highlighting complex spatiotemporal control of skeletal
development.

2. ** Lineage-Specific Programs ** : Distinct regulatory programs for
each skeletal lineage, with both unique and shared regulons

between related cell types.

3. ** Novel Regulators ** : Identification of several transcription
factors not previously associated with skeletal development
that show high regulatory activity.

4. ** Functional Enrichment ** : Cell-type-specific enrichment
patterns, with osteoblast regulons enriched for bone
development, chondrocyte regulons for cartilage development,
and mesenchymal regulons for pattern specification.

The complete analysis provides new insights into the
transcriptional control of skeletal development and identifies
potential targets for future research into skeletal disorders
and regenerative medicine.
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F Biomni generated report for the cloning protocol case study748

User prompt for cloning protocol design

I have a plasmid plentiCRISPR v2 blast:
CGTTGGAGTCCACGTT...[full sequence removed for the clarity of the

manuscript]...CGCCCTTTGA. I hope to clone a CRISPR sgRNA
targeting human B2M into this plasmid. Could you give me the
final map of the plasmid and step-by-step guidance on how
should I perform the cloning?

749

Agent Output for cloning protocol design

# Cloning B2M sgRNA into lentiCRISPR v2 blast Plasmid

## Final Plasmid Map
The final plasmid (12,816 bp) will contain:
1. ** Lentiviral Elements ** :

- 5' and 3' LTRs for viral integration
- Psi ( ) packaging signal
- RRE (Rev Response Element)
- WPRE element for enhanced expression
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2. ** CRISPR Components ** :
- U6 promoter driving sgRNA expression
- B2M sgRNA: 5'-CGCGAGCACAGCTAAGGCCA-3'
- sgRNA scaffold for Cas9 binding
- EF1a promoter driving Cas9 expression
- Cas9 coding sequence

3. ** Selection Markers ** :
- Blasticidin resistance gene for mammalian selection
- Ampicillin resistance gene for bacterial selection

## Cloning Strategy
The B2M sgRNA will be inserted between the U6 promoter and sgRNA

scaffold using BsmBI restriction sites, replacing the original
stuffer sequence.

## Step-by-Step Cloning Protocol

### 1. Design and Order Oligos
- ** Forward oligo ** : 5'-CACCGCGCGAGCACAGCTAAGGCCA-3'
- ** Reverse oligo ** : 5'-AAACTGGCCTTAGCTGTGCTCGCGC-3'

### 2. Anneal and Phosphorylate Oligos
1. Resuspend oligos to 100 M in nuclease-free water
2. Prepare annealing reaction:

- 1 L Forward oligo (100 M )
- 1 L Reverse oligo (100 M )
- 1 L 10X T4 Ligation Buffer
- 6.5 L nuclease-free water
- 0.5 L T4 PNK

3. Incubate in a thermocycler:
- 37 C for 30 minutes (phosphorylation)
- 95 C for 5 minutes (denaturation)
- Ramp down to 25 C at 5 C /min (annealing)

4. Dilute annealed oligos 1:200 in nuclease-free water (final: 50
nM)

### 3. Golden Gate Assembly
1. Prepare reaction:

- 100 ng lentiCRISPR v2 blast plasmid
- 1 L diluted annealed oligos (50 nM)
- 2 L 10X T4 DNA Ligase Buffer
- 1 L BsmBI-v2 (NEB)
- 1 L T4 DNA Ligase
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- Nuclease-free water to 20 L total
2. Incubate in a thermocycler:

- 37 C for 5 minutes
- 16 C for 5 minutes
- Repeat steps 1-2 for 10 cycles
- 55 C for 5 minutes (final digestion)
- 80 C for 5 minutes (enzyme inactivation)

### 4. Bacterial Transformation
1. Add 2 L of the Golden Gate reaction to 50 L of competent

Stbl3 E. coli cells
2. Incubate on ice for 30 minutes
3. Heat shock at 42 C for 45 seconds
4. Return to ice for 2 minutes
5. Add 950 L of SOC medium
6. Incubate at 37 C for 1 hour with shaking
7. Plate 100 L on LB agar plates with ampicillin (100 g /mL)
8. Incubate plates at 37 C overnight

### 5. Colony Screening and Verification
1. Pick 3-5 colonies and grow in 5 mL LB + ampicillin medium

overnight
2. Extract plasmid DNA using a miniprep kit
3. Verify correct insertion by Sanger sequencing using the U6

promoter forward primer:
5'-GACTATCATATGCTTACCGT-3'

4. Confirm the presence of the B2M sgRNA sequence in the plasmid

### 6. Lentivirus Production and Cell Transduction
1. Transfect the verified plasmid into HEK293T cells along with

packaging plasmids
2. Collect virus-containing supernatant after 48-72 hours
3. Filter and concentrate the lentivirus if needed
4. Transduce target cells with the lentivirus
5. Select transduced cells with blasticidin (5-10 g /mL)
6. Verify B2M knockout by flow cytometry, Western blot, or genomic

sequencing

## Applications
- Generation of B2M knockout cell lines for immunology research
- Creating cells resistant to CD8+ T cell recognition
- Development of universal donor cells for cell therapy
- Control for CRISPR screens
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Supplementary Figures753

Figure 1: Performance on HLE with different LLM as the engine. We found that Sonnet 3.7 has better performance than 3.5 for
both LLM and Biomni. However, interestingly, O1 has better performance than Sonnet 3.7 for the LLM but not for Biomni.
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Figure 2: Ablation performance on retriever. We found that retriever can signi�cantly reduce context size and has signi�cant gain
for Biomni.

Figure 3: Subject-level performance on HLE biomedicine track. Due to the small sample size, the conclusion may not be meaningful.
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Figure 4: Study design, analysis work�ow, and key �ndings of wearable-derived sleep data exploration. (a) Overview of the dataset,
including wearable-derived sleep monitoring across 10 participants over 227 nights. (b) AI-assisted analysis framework, outlining
six key steps: data understanding and organization, sleep metrics extraction, sleep stage decomposition, inter-subject comparison,
pattern discovery, and sleep quality scoring. (c) Example outputs from data analysis, including sleep ef�ciency distributions, sleep
timing deviations, and clustering of sleep architecture patterns across individuals. (d) Summary of �ndings: participants averaged
7.82 hours of sleep with 86.9% ef�ciency, showing that consistent sleep timing was strongly associated with better sleep quality.
Mild social jetlag ( 0.5 hours) was observed without signi�cant differences between weekday and weekend sleep durations.
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